Science Together

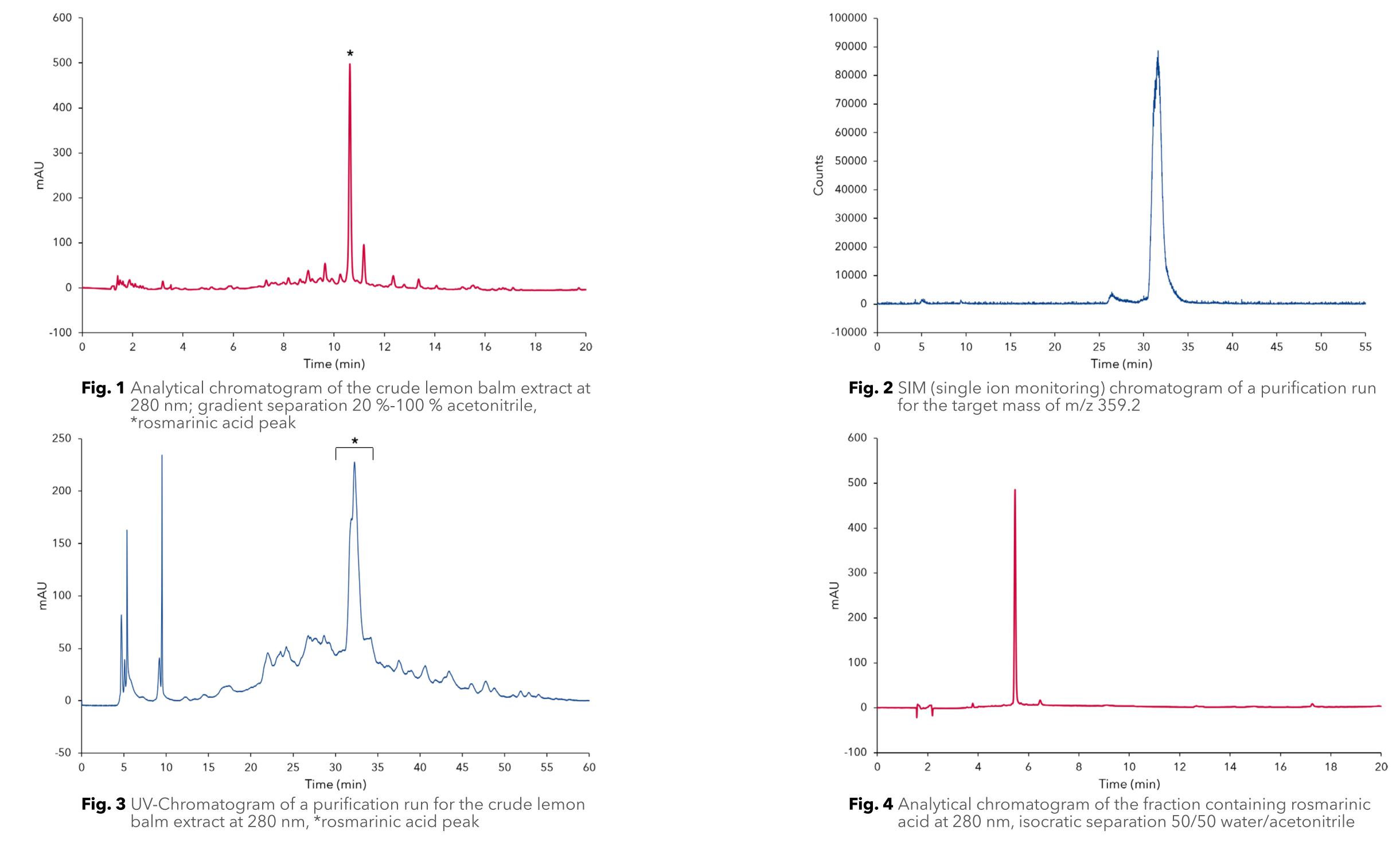
IL KNAUER

Easy and fast isolation of rosmarinic acid from lemon balm with mass-directed purification

Jan Wendrich, Yannick Krauke, Lilit Avagyan, Kate Monks; applications@knauer.net KNAUER Wissenschaftliche Geräte GmbH, Hegauer Weg 38, 14163 Berlin; www.knauer.net

SUMMARY

Rosmarinic acid is a natural product widely spread over different plant families. Preparative reversed-phase chromatography


was used for the mass-directed purification of rosmarinic acid from a lemon balm extract. The AZURA® Prep System together with the 4000 MiD mass spectrometer was showed to be well suited for this application.

INTRODUCTION

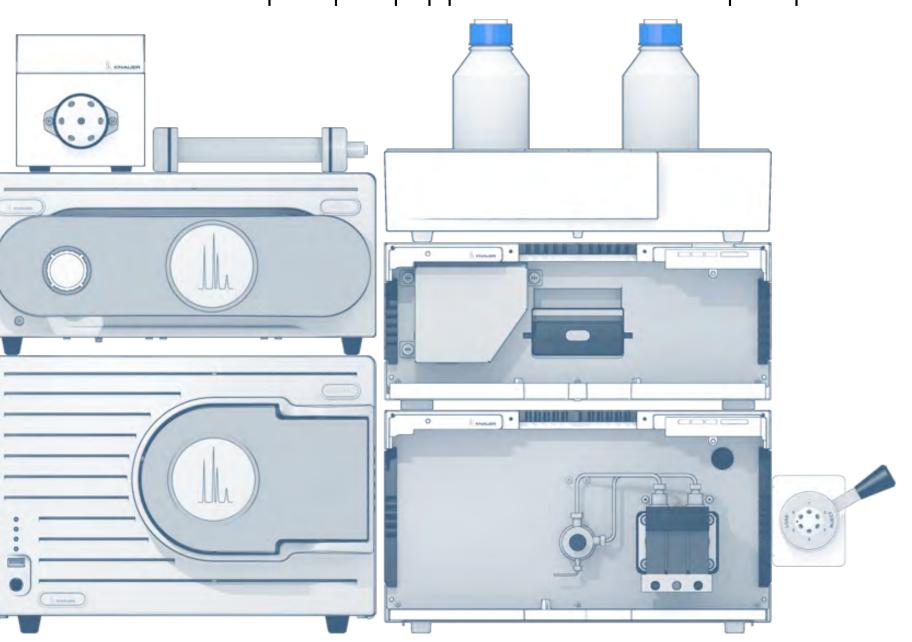
The ubiquitous natural product rosmarinic acid shows antiviral, antimicrobial and anti-inflammatory characteristics. It is used in different kinds of medicinal products for example in ointments for sports injuries. Leaves of lemon balm contain a high concentration of rosmarinic acid and are therefore an interesting source for the isolation of this compound. Here, we present an effective and time-saving method for the isolation of rosmarinic acid from a lemon balm extract based on the technique of mass-directed purification.

RESULTS

A method for the isolation of rosmarinic acid from a lemon balm extract was developed on an analytical scale using an AZURA Analytical System and a Eurospher II C18 column (**Fig. 1**). The UV spectra from the analysis showed the presence of many compounds with the structural motif of a phenyl acrylic acids. For a time-saving isolation of the target compound, the developed method was then transferred directly to the AZURA Preparative System with the ability to fractionate via molecular mass. One fraction with a compound of the desired mass (m/z 359.2; [M-H]⁻) was collected (**Fig. 2** & **Fig. 3**). The following analysis of this fraction with the AZURA Analytical System showed that is was possible to isolate the target compound rosmarinic acid with the technique of mass-directed purification in a purity of >95 % (**Fig. 4**).

MATERIALS AND METHODS

AZURA Analytical HPLC System was used for the method development consisting of a low-pressure gradient AZURA P6.1L pump, an AZURA AS 6.1L autosampler, an AZURA DAD 2.1L diode array detector equipped with a 10 mm PressureProof flow cell and an Eurosphere II 100-5 C18 150 x 4.6 mm column. The gradient method was run for 20 min at a flow rate of 1 mL/ min starting with 80/20 % water/acetonitrile increasing to 100 % acetonitrile over 20 min. Both eluents contained 0.1 % formic acid as an additive. The wavelength of the detector was set to 280 nm at a data rate of 20 Hz. 10 μL of the sample was injected.


AZURA Preparative HPLC System was used for the mass-directed purification of rosmarinic acid. The system consisted of an AZURA P 2.1L pump equipped with a 250 mL pump head

and a three channel low pressure gradient (LPG) ternary module, a manual injection valve (1/8", 6 port 2 kanal) equipped with a 5 mL sample loop, an AZURA DAD 6.1L diode array detector equipped with a 3 mm PressureProof flow cell, a 4000 MiD mass spectrometer with the MiDas sampling unit, a AZURA V 2.1S equipped with a 6 port multi position valve for fractionation and an Eurospher II 100-10 C18 250 x 30 mm column. The gradient method run for 67 min at a flow rate of 21.3 mL/min under the same conditions as the analytical method described above. The wavelength of the DAD was set to 280 nm at a data rate of 10 Hz, while the mass selective detector was set to SIM mode monitoring the relevant mass of m/z 359.2. The data trace of the mass selective detector was used for fractionation via the multi-position valve. 5 mL of the crude extract obtained under sonication from dried leave material with 30 % isopropanol was injected.

CONCLUSION

Rosmarinic acid was the main metabolite of the extracted lemon balm material. This target molecule was isolated in a short time with an AZURA Preparative HPLC system using the technique of mass-directed purification. By this, the number of fractions was reduced to one leading to a significant decrease of past analysis time.

VPH0067 © KNAUER Wissenschaftliche Geräte GmbH

Science Together

KNAUER

Easy and fast isolation of rosmarinic acid from lemon balm with mass-directed purification

ADDITIONAL RESULTS

Fig. A1 Mass spectrum of rosmarinic acid ([M-H]⁻).

ADDITIONAL MATERIALS AND METHODS

 Tab. A1
 Method
 parameters (preparative)

 Tab. A2 Method parameters (mass spectrometer analysis)

Eluent A	Water + 0.1 % formic acid Acetonitrile + 0.1 % formic acid			Scan mode	Interleave (Scan/SIM) 100-400 <i>m/z</i>	
Eluent B				Mass range		
Gradient	Time [min]	% A	% B	Scan rate	1 Hz	
	0	80	20	Step	0.2	

mL/min Sys				
m∟/mm Sys	stem pressure	100 bar	lon mode	Negative
Ru	in time d	67 min	Gas flow	2.5 L/min
Inje	ection mode	Full loop		
ım Da	ata rate	10 Hz		
Tin	ne constant	0.1 s		
	m Da	m Data rate	m Data rate 10 Hz	m Data rate 10 Hz

Tab. A3 System configuration & data (analytical system)

Tab. A4 System configuration & data (preparative system)

Instrument	Description	Article No.	Instrument	Description	Article No. APE20LA AZZ00AB	
Pump	AZURA P 6.1L	<u>APH34GA</u>	Pump	AZURA P 2.1L 250 mL AZURA LPG module for Pump P 2.1L		
Autosampler	AZURA AS 6.1L	<u>AA00AA</u>	Injection	AZURA V 2.1S Valve 6 Port 2 Position	<u>A1359</u>	
Detector	AZURA DAD 2.1L	<u>ADC01</u>	Sample loop	5 mL Sample loop	<u>A0586-2</u>	
Flow cell	PressureProof Flow cell 10 mm 10 μ l	<u>AMC38</u>	Detector	AZURA DAD 6.1L	<u>ADC11</u>	
Column	Eurospher II 100-5 C18 with precolumn, Vertex Plus Column 150 x 4.6 mm	<u>15VE181E2J</u>	Flow cell PressureProof flow cell 3 mm 2 µL		<u>AMB18</u>	
Software	ClarityChrom	<u>A1670</u> <u>A1676</u>	 Mass spectrometer	4000 MiD with MiDas	<u>A66900</u>	
	ClarityChrom 7.4.2 - PDA extension		- Fractionation	AZURA V 2.1S Valve 6 Port Multiposition	AWA10BC	

ClarityChrom	<u>A1670</u>
ClarityChom PDA Extension	<u>A1676</u>
ClarityChom MS Extension	<u>A1679</u>
ClarityChrom FRC control module	<u>A1682</u>
VertexPlus AX Column 250x30 mm Euros- pher II 100-10 C18	<u>25QE181E2N</u>
	ClarityChom PDA Extension ClarityChom MS Extension ClarityChrom FRC control module VertexPlus AX Column 250x30 mm Euros-